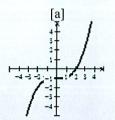
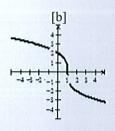
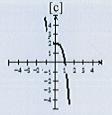
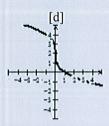
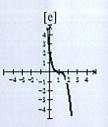

Let f be the function whose graph is shown here. []


17 PTS

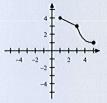



Which of the graphs below is f^{-1} ?



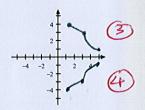


[] You are trying to sketch the graph of an equation. You draw part of the graph as shown below. Replacing x with -x does not yield an equivalent equation.

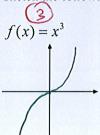

SCORE:

/7 PTS

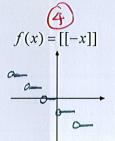
Replacing y with -y yields an equivalent equation.

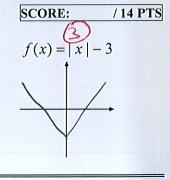

Replacing x with -x and y with -y does not yield an equivalent equation.

Partially drawn graph

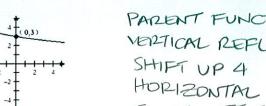


Sketch the entire graph of the equation on the axes on the right.


ANSWER:



[] Sketch the following graphs.


 $f(x) = \frac{1}{x-3}$

[] Let f be the function whose graph (a half-parabola) is shown below.

Find the equation for f using transformations.

ANSWER: PARENT FUNCTION $f(x)=Jx^{n}$ VERTICAL REPLECTION HORIZONTAL STRETCH (FACTOR 3) SHIFT LEFT 3 -f(3(x+3)+4)

SCORE: /14 PTS

INSIDE 1

[]	According to the Old Farmer's Almanac, you can find the outdoor temperature by first counting the	SCORE:	/ 14 PTS
	number of cricket chirps per minute. The function $T(c) = \frac{4}{5}c + 4$ then gives the temperature in degree	s Celsius, where	c is the
	number of cricket chirps per minute.		
			6

[a] Find the
$$c$$
 – and T – intercepts of the function.

THAT: $T(O) = \frac{4}{5}(O) + 4 = 4$
 C – INT: $O = \frac{4}{5}c + 4$
 $\frac{4}{5}c = -4$ — $C = -5$

ANSWER:
$$c - \text{int}$$
 $- \frac{3}{4}$

4 [b] Interpret the meaning of the T – intercept in context.

Do not use any of the following variables in your anwer: c, T, x, y

Do not use any of the following words in your answer:

intercept, axis, vertical, horizontal, input, output, graph, function, variable, slope, rise, run

ANSWER: 4 AT 4°C, THE CRICKETS WILL STOP CHIRPING

[c] Interpret the meaning of the slope in context.

Do not use any of the following variables in your answer: c, T, x, y

Do not use any of the following words in your answer:

intercept, axis, vertical, horizontal, input, output, graph, function, variable, slope, rise, run

ANSWER: (4) EACH A DOITIONAL CHIRP PER MINUTE CORRESPONDS

[] Let
$$f(x) = 2\sqrt{-x+1} - 5$$
.

SCORE: /21 PTS

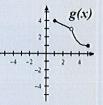
4 [a] List the sequence of transformations in correct order from the parent function to f .

TRANSFORMATION #1: STRETCH (FACTOR 2) TRANSFORMATION #4: PREFIXED (leave blank if < 4 transformations)

TRANSFORMATION #2: SHIFT DOWN 5

TRANSFORMATION #5: (leave blank if < 5 transformations)

TRANSFORMATION #3: SHIFT LEFT | TRANSFORMATION #6: (leave blank if < 3 transformations)


TRANSFORMATION #6: (leave blank if < 6 transformations)

TRANSFORMATION #6: (leave blank if < 7 transformations)

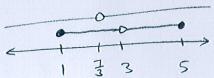
TRANSFORMATION #6: (leave blank if < 6 transformations)

[] Let $f(x) = \frac{5x+11}{7-3x}$.

Let g be the function whose graph is shown on the right.

Let h be the function given by the table of values below.

				,		
x =	0	1	2	3	4	5
h(x) =	3	2	5	4	1	0


4 [a] Find [[f(4)]].

$$\begin{bmatrix} \frac{31}{-5} \end{bmatrix} = \begin{bmatrix} -6.2 \end{bmatrix} = -7$$

4 [b] Find the domain of f.

4 [c] Find the domain of g.

[d] Find the domain of f - g.

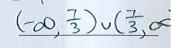
 $g^{-1}(1)$

$$g'(1) = x$$

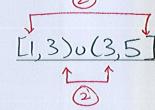
 $g(x) = 1$

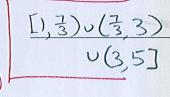
 \leftarrow [f] Find the range of g

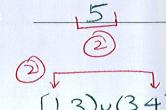
 \leftarrow [g] Find the range of g^{-1} .

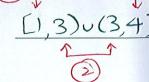


SCORE: / 63 PTS


ANSWER:


ANSWER:


ANSWER


ANSWER:

ANSWER:

ANSWER:

ANSWER:

3 [h] Find the zero(s) of
$$h$$
.

$$h(x)=0$$

$$x=5$$

$$4$$
 [i] Find $(\frac{g}{c})(5)$

Find
$$(\frac{g}{f})(5)$$
.

$$\frac{g(5)}{f(5)} = \frac{1}{36} = -\frac{8}{36} = -\frac{2}{9}$$

$$4$$
 [j] Find $(gh)(1)$.

$$4$$
 [k] Find $(f \circ h^{-1})(3)$.

$$4$$
 [I] Find $(g \circ g^{-1})(5)$.

Find the average rate of change of
$$h$$
 from $x_1 = 1$ to $x_2 = 5$.

$$\frac{h(5)-h(1)}{5-1} = \frac{0-2}{5-1} = \frac{-2}{4} = -\frac{1}{2}$$

Find the difference quotient
$$\frac{f(x) - f(1)}{x - 1}$$
.

$$\frac{5 \times +11}{7 - 3 \times} - 4$$

$$\frac{5 \times +11}{7-3 \times} - 4 = \frac{5 \times +11 - 4(7-3 \times)}{(x-1)(7-3 \times)} = \frac{5 \times +11 - 28 + 12 \times}{(x-1)(7-3 \times)} = \frac{17(x-1)}{(x-1)(7-3 \times)} = \frac{17}{7-3 \times}$$